Binary Sequence Formats

The Xdna, SnapGene, and Gck sequence formats

Damien Goutte-Gattat <dgouttegattat@incenp.org>
Copyright © 2019 Damien Goutte-Gattat
2019/08/20

Abstract

This document intends to document binary sequence formats used by some molecular biology pro-
grams and which are, as far as I know, not documented anywhere else.

Table of Contents

I 41 4010 L0 od) o ST 1
1.1. History and Rationale for this Documentcccccceeevireiiiiiiiiiiinee e, 1
1.2. Conventions Used in this Documentccovvviiiieiiieiiiiiiiiiciee e, 2
1.3, Legal NOLICE ..uueeeeiieeiiie e e e e e e e vt e e e eaaaes 2
2. The Xdna FOTMALccooiiiiiiiiiii e e e e e e e e e e eera e e e eeaaeees 2
2.1. BASE SETUCTUTE ...civviiiiiiiiiie et e et e e e e e e e e aba s 3
2.2. Extended Xdna Filesccoeeeiiiiiiiiiiiiiie e 3
3. The SnapGene FOrMatcccooviiiiiiiiiiiei e e e e e e 5
3.1. General STIUCLUTEovvviiiieeieiieiieee e e e e e e e ea e e e eeaees 5
3.2. The Co0kie PaCKELcoovviiiiiiiieeciieeecee e e e e e e e eaaaeaas 5
3.3. The DNA PaCKEL ...ccoviiiiiiiii et e et e e e e e e e e e e e e 6
3.4, Other PaCKets ...ccovvvuiiiiiiiiiiiieiee e e e e e e e e e e e e eeaaes 6
4. The GCK FOTMAL ...uuuuieieiiiiiiiieee et e e e e e e et s e e e e e e e easraa s eeeeaeens 7
4.1. The Header and the Sequence Packetlccccoovviiiiiiiiiiiiiiiiniiiieeeeeee 8
4.2. The Features Packet and Associated Stringscccoeeeeeeviviiiiiiiineeeeeeeniinnnnn, 9
4.3. The Sites Packet and Associated Stringsccccceeeevieeeiiiiiiiiiiiineeeeeeeeniine, 10
4.4, The Versions SECLIONuuiieiiiiiiiiiiiiiiie e e e e e e e e e e eeeaaeeaans 10
4.5. The Name and Flags SeCtionccccoeeeiiiiiiiiiiiiiie e 11

1. Introduction

1.1. History and Rationale for this Document

When I first started to work in a molecular biology lab, most of my then colleagues were
using Apple computers and a particular, Mac OS-specific plasmid editor called DNA Strid-
er. | was regularly given some sequence files in the native binary format of that program,
which none of the applications available on my GNU/Linux desktop were able to read.

Between two experiments, I reverse-engineered the DNA Strider format and wrote a cou-
ple of small C programs to read a DNA Strider file and convert it into a FASTA or GenBank
file, or conversely to read a FASTA file and convert it into a DNA Strider file. This was my
Xdna?2 project [https://incenp.org/dvipt/xdna2.html].

A few years later, in another lab, I received from external collaborators some sequence
files in the native format of another sequence editor called SnapGene. I envisioned for a
while to add support for that format to my Xdna2 project, but quickly decided against it,
mostly on the grounds that, given the complexity of the SnapGene format, implementing
a parser in C code would have been too time-consuming.

https://incenp.org/dvlpt/xdna2.html
https://incenp.org/dvlpt/xdna2.html

Binary Sequence Formats

Instead, I chose to develop the parser in Python, and since I was doing that, I also re-
wrote my original DNA Strider parser in Python as well. I wrote both parsers in such a
way that they integrate seamlessly with the SeqIO framework of Biopython. This was my
BinSegs [https://incenp.org/dvipt/binseqgs.html] project.

Later again, I came across files in another proprietary format, this time generated by a
program called Gene Construction Kit. I again reverse-engineered the format and added
a parser for it to the BinSeqs project. At around the same time, I submitted my parsers
to the Biopython project. At the time of this writing (mid-August 2019), they have been
merged into the master branch and will be part of the upcoming Biopython 1.75 release.

The code of the parsers may be read by anyone wishing to understand the formats—I
tried to put enough explanatory comments for that purpose. However, I felt that it could
be useful to have a standalone description of the formats in plain English, which would
not require the reader to be fluent in Python. This is thus the purpose of this document.

I document here the DNA Strider, SnapGene, and Gene Construction Kit native formats,
as I understood them. This is not an exhaustive documentation, but it should allow anyone
wishing to read files in those formats to do so and to extract most of the information the
files contain.

1.2. Conventions Used in this Document

In the schematics used to describe data structures, the following conventions are used:

* When two rows are depicted, the top row contains byte offsets from a reference position
(e.g. the beginning of the file), while the bottom row indicates the nature of the data
found at the corresponding offset. All offsets are expressed in hexadecimal.

* B denotes a single byte; an expression like B(x) denotes a block of x bytes.

* Hand I denote short (16-bit) and long (32-bit) integers, respectively; a preceding >
sign indicates that the byte order is big-endian.

* Pad(x) denotes x bytes of padding.
* P(name) denotes a 8-bit Pascal string.

* In offsets or in expressions indicating a number of bytes, a value prefixed by a * means
the value is an offset and should be replaced by the value stored at that offset (this is
analog to dereferencing a pointer in C).

Unless otherwise noted, all “Pascal strings” (sometimes abbreviated as P-strings) referred
to in the text are 8-bit Pascal strings, meaning that the length of the string is stored in a
single byte ahead of the first character of the string. In some places, Pascal string variants
in which the length is stored in 4 bytes (in big-endian order) are also encountered, they
will always be explicitly referred to as “32-bit Pascal strings”.

1.3. Legal Notice
This document is copyright 2019 by Damien Goutte-Gattat.

This work is licensed under a Creative Commons [http://creativecommons.org/licens-
es/by-sa/3.0/] Attribution-Share Alike 3.0 Unported License.

2. The Xdna Format

The Xdna format is the native format used by Christian Marck’s DNA Strider program for
Mac OS. It is also used by Serial Cloner [http://serialbasics.free.fr/Serial Cloner.html].

https://incenp.org/dvlpt/binseqs.html
https://incenp.org/dvlpt/binseqs.html
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://serialbasics.free.fr/Serial_Cloner.html
http://serialbasics.free.fr/Serial_Cloner.html

Binary Sequence Formats

2.1. Base Structure

A basic Xdna file comprises three sections in a fixed order: a header, the sequence, and
a comment (the comment being optional). The general structure is depicted in Figure 1.

Figure 1. Structure of a Xdna file

00 e1 02 03 ic 20 24 60 64 6F 70 70+(*1C)

B |B |B |Pad(25) >I >I Pad(60) >I Pad(11) B(*1C) B(*60)

B
L L Comment
Sequence
End of header (OxFF)
Length of comment
Negative length

Length of sequence
Topology (@: linear, 1: circular)
Type (1: DNA, 2: degenerate DNA, 3: RMA, 4: protein)
Format version (@)

The header has a fixed size of 112 bytes. It starts with a byte giving the version number
of the format, which seems to always be zero (I have never seen a Xdna file with a differ-
ent version). It ends with a byte which seems to always be 0xFF and whose meaning is
unknown (it may be simply to mark the end of the header).

After the version byte come two bytes (byte 2 and 3) indicating the type of sequence
stored in the file (1 denotes a DNA sequence, 2 a degenerated DNA sequence, 3 a RNA
sequence, and 4 a protein sequence) and the topology of the sequence (0 denotes a linear
sequence and 1 a circular sequence), respectively.

The header contains three lengths which are all stored as big-endian long integers (4
bytes). There is the length of the sequence (bytes 29-32), the length of the comment
(bytes 97-100), and the negative length (bytes 33-36). The “negative length” is the length
of the part of the sequence before the base considered as the “origin” (base number 1,
which in DNA Strider is not always the first base).

Serial Cloner has no such concept of a sequence origin and always generates
@ files with a negative length of zero.

The sequence itself starts immediately at the first byte after the header (byte 113), and
runs for as many bytes as indicated in the header’s sequence length field. The sequence
is followed by the optional comment, without any separating byte(s)—the first byte after
the sequence is the first character of the comment. The comment may be empty, in which
case bytes 97-100 contain zero and the file ends after the last byte of the sequence (unless
it is an “extended” Xdna file with an annotation section, see below).

2.2. Extended Xdna Files

Some Xdna files contain an additional annotation section after the comment (or immedi-
ately after the sequence if the comment is empty). This is typically the case of files gen-
erated by Serial Cloner (actually, I believe this additional section might be an extension
of the format, created by Serial Cloner; I have never seen a DNA Strider-generated Xdna
file containing such a section).

Figure 2. Structure of the Xdna annotation section

‘ B ‘ Right overhang ‘ Left overhang ‘ B ‘ Features...

L Unknown byte L Number of features

The annotation section (Figure 2) starts with a single byte whose meaning is unknown
(it might be there solely to indicate the presence of the annotation section), then con-

Binary Sequence Formats

tains two variable-length fields describing optional right-side and left-side overhangs (de-
scribed in the following section). Then, a single byte gives the number of sequence fea-
tures, which are then stored in as many feature structures (described in a later section)
until the end of the file.

2.2.1. Overhang Specifications

Each overhang (right and left) is represented by a Pascal string containing the text rep-
resentation of the overhang length, followed by the actual sequence of the overhang.

A length of zero indicates there is no overhang; a strictly positive length denotes a 5’
overhang, and a strictly negative length denotes a 3’ overhang.

Here are some examples of overhang specifications:
* Ox00 0x30: indicates no overhang (0, encoded as a Pascal string);
* Ox01 Ox32 Ox41 0x41: denotes a 5’ AA overhang (P-string 2, then AA);

* Ox02 Ox2D 0x31 0x43: denotes a 3’ C overhang (P-string -1, then C).

2.2.2. Features

After the left overhang specification comes a single byte indicating the number of features
(a Xdna file therefore cannot contain more than 255 features). If there’s no features, that
byte is zero and the file ends here.

If there are features, they are stored one after the other after that last byte. Each feature
contains 6 fields and 4 flags (Figure 3).

Figure 3. Structure of a Xdna feature

|P(name) |P(desc) ‘P(type} ‘P(start) |P(end} |B |B ‘B |B ‘P(color)
t L L |— Arrow flag
Unknown flag
Show flag

Forward strand flag

All fields are stored as Pascal strings. They are, from the first to the last:
* the displayed name of the feature;
* a description of the feature;

* the type of the feature, which may be any of the features type supported by GenBank
(e.g., misc feature, CDS, exon, etc.);

* the start position of the feature (counting from 1, not 0), stored as text;
* the end position of the feature, stored as text;

* the text representation of a RGB triplet (3 comma-separated numbers from 0 to 255,
e.g. 127,127,127,) indicating the color used to paint the feature on a sequence or
plasmid map.

could theoretically support fuzzy locations (but not compound locations), by
using a notation similar to the one used in GenBank flat files (e.g., <5 to de-
note a start position located anywhere before the fifth base). However neither
DNA Strider nor Serial Cloner support such notation and only exact locations
may be used.

@ Since the start and end positions of the feature are stored as text, the format

Binary Sequence Formats

The description field may contain a simple free-form comment on the feature, but may also
contain GenBank-like qualifiers. In that case, the field is structured in lines (separated
by carriage returns, \r), the first line being a free-form comment, and the following lines
containing key-value pairs. Here is an exemple of a formatted description field (line feeds
inserted for clarity):

Free-form comment on the first line\r
gene="bla"\r

product="beta-lactamase TEM"\r
function="ampicilin resistance"

The four flags are stored between the fifth and sixth fields, each flag being a single byte.
The first flag indicates the strand the feature is on, for DNA sequences (reverse strand if
the flag is not set, forward strand if it is); the second flag indicates whether the feature
should be displayed on a sequence or plasmid map; and the fourth flag indicates whether
the feature should be decorated with an arrow. The meaning of the third flag is unknown.

3. The SnapGene Format

The SnapGene format (typical file extension: .dna) is the native format of the SnapGene
[https://www.snapgene.com/] program from GSL Biotech.

3.1. General Structure

A SnapGene file is a succession of packets. A packet starts with a single byte indicating
the type of the packet (and the nature of the data it contains). Then a big-endian long
integer gives the number of data bytes in the packet, and the actual data bytes start
immediately after that (Figure 4).

Figure 4. Structure of a SnapGene packet

go |01 05

>1 B(*01)

L Data bytes

Packet length (number of data bytes)
Packet type tag

Packets in a SnapGene file may be encountered in any order, except for the Cookie Packet
which must always be the first packet in the file.

3.2. The Cookie Packet

Figure 5. Structure of the SnapGene cookie packet

00 01 05 oD OF 11

B >1 B(8) >H >H

L L Import version
Export version
e of sequence (1: DNA)
Magic cookle "SnapGene")

Length (always 14)
Packet tag (0x09)

https://www.snapgene.com/
https://www.snapgene.com/

Binary Sequence Formats

This packet (Figure 5) is identified by the tag 0x09. The data bytes start with 8 bytes
encoding the string SnapGene, which acts as a magic cookie allowing to identify a Snap-
Gene file.

The cookie is followed by three big-endian short integers, the first of those indicating the
type of sequence stored in the file (which is always 1 for a DNA sequence).

Given its fixed structure, the Cookie Packet always contains 14 data bytes and therefore
a SnapGene file always starts with the following sequence of bytes:

0x09 0x00 0x00 Ox00 OXOE 0x53 OX6E 0x61 0x70 0x47 0x65 OX6E 0x65
[\ A L L I D D
| Length (14 bytes) ‘st ‘'n' ‘'a' 'p'" 'G' 'e' 'n' ‘'e'
+- Packet tag

3.3. The DNA Packet

This packet (Figure 6) has the tag 0x00. A SnapGene file cannot contain more than one
packet of this type.

Figure 6. Structure of a SnapGene DNA packet

610} o1 05 o6

B B |B((*01)-1)

=1
L L Sequence
Sequence flags

Packet length (length of sequence + 1)
Packet tag (©x00)

The first data byte is a flag byte. The second bit of that byte is the Topology flag, which
indicates a circular sequence (if set) or a linear sequence (if not set).

The remaining data bytes contain the sequence itself, encoded in ASCII. Therefore the

length of the sequence is the number of data bytes in the DNA Packet minus one byte
for the flag byte.

3.4. Other Packets

3.4.1. The Notes Packet

This packet has the tag 0x06. It contains some metadata about the sequence. The data
is a text representation of a XML tree starting with a root node named Notes.

Interesting nodes in that tree may include:
* the Type node, whose value can be Synthetic or Natural;

* the Created and LastModified nodes, which both contain a date in the YYYY.M.D
format;

* the AccessionNumber node;

* the Description and Comments nodes, which contain free-form remarks about the
sequence.

Binary Sequence Formats

The value of the Description and Comments nodes contains XML-escaped HTML tags,
as in the following example:

<Comments>< html>&1t;body>Sample comments</body>&1lt;/html></Comments>

3.4.2. The Features Packet

This packet has the tag Ox0A. It contains the text representation of a XML tree starting
with a root node named Features which lists the features found in the sequence.

Each feature is represented by a XML node named Feature. That node may contain the
following attributes:

* a name attribute, containing a free-form name given to the feature;
* a type attribute, containing a GenBank-like feature type;

* adirectionality attribute, whose value may be 0 for a non-directional feature (in
that case, the attribute is generally absent altogether), 1 for a feature on the forward
strand, 2 for a feature on the reverse strand, and 3 for a bi-directional feature).

A Feature node contains one or several Segment child node(s) giving the sequence
coordinates of the feature. Each Segment node has a range attribute whose value is of
the form XXX- YYY, where XXX is a 1-based start coordinate and YYY is the end coordinate.

After the Segment node(s), the Feature node may also contain Q nodes representing
feature qualifiers. Each Q node has a name attribute giving the name of the qualifier,
and a V child node for the value of said qualifier. The value itself is stored in a text or
int attribute depending on the type of the qualifier. Textual values contain XML-escaped
HTML tags.

Here is a (simplified) example of the XML that may be found in a Features packet:

<Features>

<Feature name="SV40 term" directionality="1" type="terminator">
<Segment range="400-750" />
<Q name="note">

<V text="<html><body>SV40 poly-adenylation signal</body>&Llt;/html>" />

</Q>

</Feature>

</Features>

3.4.3. The Primers Packet

This packet has the tag 0x05. It is similar to the Features Packet but is specifically de-
signed to contain primer binding data, in a XML tree with a root node named Primers.

Each primer is represented by a Primer node with a name attribute (the primer’s name,
logically enough), a sequence attribute (the full sequence of the primer), and a de-
scription attribute (a free-form description, with XML-escaped HTML tags).

The Primer node contains one or several BindingSite child node(s) with a Location
attribute (containing a coordinates pair in the XXX - YYY format, as for the Segment node
found in the Features Packet) and a boundStrand attribute whose value is either 0
(primer binding to the forward strand) or 1 (primer binding to the reverse strand).

4. The Gck Format

The Gck format is the native format of the Gene Construction Kit [http://www.textco.com/
gene-construction-kit.php] program from Textco Biosoftware.

http://www.textco.com/gene-construction-kit.php
http://www.textco.com/gene-construction-kit.php
http://www.textco.com/gene-construction-kit.php

Binary Sequence Formats

Figure 7. General structure of a Gck file

‘8(24) ‘>I ‘Sequence Packet ‘>I ‘Unknown Packet
L__ L—— Size of next unknown packet
Size of sequence packet
Header
‘>I ‘Features Packet ‘Feature strings ‘...

L—— Size of features packet

‘>I ‘sites Packet ‘Sites strings ‘>I ‘Unknown Packet ‘ ..
L—— Size of sites packet L—— Size of next unknown packet
‘>H ‘Versions ‘Version strings ‘B(?GB) ‘P(name) ‘B(l?) ‘
L__ L—— 260 bytes per version L—— Unknown data L—— Flags
Number of versions

The overall structure of a Gck file is depicted in Figure 7. This is a somewhat weird mix
of fixed-sized blocks (the header, the unknown 706-byte block near the end, and the 17-
byte flags section), length-prefixed packets, ad-hoc structures (the versions), and lists of
strings.

All the types of packets start with a big-endian long integer giving the size of the packet
(the number of following data bytes). However, and contrary to SnapGene packets as
described above, there is no type tag indicating the type of the packet and the nature of
its contents. The type of a packet is solely indicated by the packet’s position in the overall
structure of the Gck file.

All multi-byte numerical values use big-endian order.
The following sections describe the different components of a Gck file, in the order in
which they appear.

4.1. The Header and the Sequence Packet

A Gck file starts with a fixed-size header of 24 bytes. I could not identify any field within
that header. Bytes 4 and 8 seem to always contain the value 0x0C, which may act as a
magic cookie.

Immediately after the header comes the Sequence Packet (Figure 8).

Figure 8. Structure of the Gck sequence packet

0o 04 o8

ST B(*04)

=1
L L Sequence
Length of sequence

Length of packet (= length of sequence + 4)

The Sequence Packet, as a normal length-prefixed packet, starts with a long integer giving
the size of the packet. Then comes another long integer giving the length of the sequence,
and then the sequence itself, in as many bytes as indicated by the previous integer.

The Sequence packet is followed by a packet whose contents is unknown. Being a proper
length-prefixed packet, it can however be skipped easily by reading the number of bytes
indicated in the first 4 bytes.

Binary Sequence Formats

4.2. The Features Packet and Associated Strings
Sequence features are described in two consecutive parts of a Gck file: first a Features

Packet (Figure 9), then a list of strings associated with the features (thereafter referred
to as the Feature Strings List).

Figure 9. Structure of the Gck features packet

0o 04 o8 DA

>I >H B((*08)x92)

=1
L__ L—— Feature structures
Number of features

Length of sequence
Length of packet

The data bytes of the packet start with a long integer giving the length of the sequence
(which is the same as the length indicated at the beginning of the Sequence Packet, 1
don’t know why that information is repeated here), followed by a short integer giving the
number of features.

Each feature is then described by a 92-byte block (Figure 10).

Figure 10. Structure of a Gck feature

[c]c] 04 08 OE i@ 1E | 1F 30 34 38 5B
>1 >T Pad(6) >H Pad(14) B Pad(17) Pad(35) B

>I >1
LA, LA— Version
Comment pointer
Name pointer
Strand flag
Feature type

Two long integers in bytes 1-4 and 5-8 give the 1-based coordinates of the feature. The
strand flag in byte 31 can be 0 (no strand specified), 1 (feature on the reverse strand), 2
(feature on the forward strand), or 3 (feature on both strands).

End position
Start position

A short integer in bytes 15-16 supposedly indicates the feature’s type. This field can take
a large range of values, but in all the Gck files I have seen there was actually only two
possibilities: a value of zero is a misc_ feature (which can be anything, really), and any
non-zero value denotes a CDS.

The last byte of the structure (byte 92) is a version number. It indicates that the feature
belongs to the specified version of the file. Versions are numbered in reverse order: the
most recent version has the number zero, then the previous version has the number 1,
the version before that has the number 2, and so on. (So if you are only interested in
the current version of the file, you may skip all features with a version number greater
than zero.)

Two long integers, in bytes 48-51 and 52-55, indicate, if they contain a non-zero value,
that this feature has respectively a name (stored as a 8-bit Pascal string) and a comment
(stored as a 32-bit Pascal string) in the Feature Strings List after the Features Packet.

The Feature Strings List has no header, no length indicator, or any marker delimiting the
beginning or end of the section. To parse it, or even just to skip it, one needs to know
how many strings to expect (and whether they are 8-bit P-strings or 32-bit P-strings), by
first parsing the Features Packet and looking at which features have non-zero name or

Binary Sequence Formats

comment pointers. The strings are stored in the same order as the features in the Features
Packet, meaning there is first the name of the first feature (if any), then the comment of
the first feature (if any), then the name of the second feature, and so on.

4.3. The Sites Packet and Associated Strings

Restriction sites are described in a similar way as the features, with a Sites Packet (Fig-
ure 11) listing the sites, followed by a list of strings (the Site Strings List).

Figure 11. Structure of a Gck sites packet

oo a4 o8 QA

=1 >H B((*08)x88)

L—— Site structures
Number of sites
Leng th of sequence
Length of packet

As for the Features Packet, the data bytes start of the Sites Packet start with a long
integer repeating again the length of the sequence, followed by a short integer giving
the number of sites.

Each site is then described by a 88-byte block (Figure 12).

Figure 12. Structure of a Gck site

00 04 08 20 24 28

Pad(24) >T Pad(48)

L__ L—— Comment pointer
Name polnter
End position

Start pOSlthﬁ

Two long integers in bytes 1-4 and 5-8 give the 1-based coordinates of the restriction
sites. Two more long integers, in bytes 32-35 and 36-39, indicate, if they contain a non-
zero value, the presence of an associated string in the following Site Strings List.

As for the features, names and comments are stored as 8-bit and 32-bit P-strings, respec-
tively, in the same order as the order of site structures in the Sites Packet. And as for the
features, the list of site strings can only be parsed by knowing the strings to expect, by
parsing first the Sites Packet.

4.4. The Versions Section

A Gck file can store a kind of history of itself, by keeping track of different versions. Such
versions are described in a Versions pseudo-packet followed by a list of associated strings.

The Versions pseudo-packet is not a proper length-prefixed packet. Instead of a long in-
teger giving the size of the entire packet, it starts with a short integer giving only the
number of versions, followed by as many 260-byte structures as there are versions.

10

Binary Sequence Formats

I could not find any meaning to the contents of a Version structure, save for the last 4
bytes (257-260) which indicate, if they contain a non-zero value, that the version has an
associated comment in the following Versions Strings List.

If a comment is present, then it is stored as a 32-bits Pascal string. As for the feature and
site strings, the Versions Strings List requires to know how many strings to expect, by
parsing first the version structures.

4.5. The Name and Flags Section

After the Version Strings List, there is a fixed-size block of 706 bytes. I have no idea about
the contents of this block. It has no length indicator or terminator marker.

That unknown block is followed by a single 8-bit Pascal string containing a free-form name
for the sequence described in the file.

Finally, after the name string is a 17-byte block presumably containing flags. I could only
make sense of the last byte of the block, which if non-zero indicates that the sequence is
circular (it is linear if the flag is unset).

11

	Binary Sequence Formats
	Table of Contents
	1. Introduction
	1.1. History and Rationale for this Document
	1.2. Conventions Used in this Document
	1.3. Legal Notice

	2. The Xdna Format
	2.1. Base Structure
	2.2. Extended Xdna Files
	2.2.1. Overhang Specifications
	2.2.2. Features

	3. The SnapGene Format
	3.1. General Structure
	3.2. The Cookie Packet
	3.3. The DNA Packet
	3.4. Other Packets
	3.4.1. The Notes Packet
	3.4.2. The Features Packet
	3.4.3. The Primers Packet

	4. The Gck Format
	4.1. The Header and the Sequence Packet
	4.2. The Features Packet and Associated Strings
	4.3. The Sites Packet and Associated Strings
	4.4. The Versions Section
	4.5. The Name and Flags Section

